Evaluating Live Sequence Charts as a Programming Technique for
Non-programmers

Michal Gordon
Weizmann Institute of Science
Rehovot, Israel
michal.gordon @weizmann.ac.il

Abstract—Behavioral programming is a recent programming
paradigm that uses independent scenarios to program the
behavior of reactive systems. Live sequence charts (LSC) is a
visual formalism that implements the approach of behavioral
programming. The approach attempts to liberate programming
by allowing the user to program the behavior of reactive
systems by scenarios. We would like to evaluate the approach
and seek the naturalness of the best interface for creating the
visual artifact of LSCs. Several such interfaces, among which
is a novel interactive natural language (NL) interface, exist.
Initial testing indicates that the LSCs’ NL interface may be
preferred by programmers to procedural programming and
that in certain tasks LSCs may be a viable and more natural
alternative to conventional programming. Many challenges
exist in trying to prove the intuitive and natural nature of
a new programming paradigm, which differs from others not
only in syntax but in many other respects. We describe these
challenges in this proposal.

I. INTRODUCTION

In the new paradigm of behavioral programming the
user specifies system behavior in an incremental manner by
specifying scenarios. The language of live sequence charts
(LSCs) [1] was the basis of this paradigm, and is part of the
grand challenge to create a new approach to programming
that would allow more people to define system behavior
easily, by making programming closer to how they think [2].
The visual language of LSCs allows specifying scenarios
of what may happen, what must happen and what must
never happen. These scenarios, based on classical sequence
diagrams with additional modalities, can be executed directly
(31, [4].

The idea that the new paradigm may be useful to non-
programmers needs to be evaluated. Because LSCs are visual
in nature, there are many ways to create them: (i) drawing
the diagram by dragging and dropping elements; (ii) playing-
in the scenario with a graphical user interface (GUI) of the
system, or a model thereof [3], [5]; (iii) typing or speaking
the scenario in a controlled natural language [6] and; (iv)
a combination of the last two methods, a method we call
Show & Tell [7].

In the current proposal we would like to evaluate the
LSC language and the available interfaces to create LSCs

978-1-4673-1859-4/12/$31.00 (© 2012 IEEE

17

David Harel
Weizmann Institute of Science
Rehovot, Israel
dharel@weizmann.ac.il

by non-programmers. Our objectives include (i) comparing
the various interfaces for creating LSCs and (ii) evaluating
whether LSCs can indeed provide a natural way to program;
can they liberate programming from the need to write down
symbolic artifacts, from the need to specify requirements
separately from the program and from the need to structure
the behavior according to the system’s structure, as discussed
in [2].

Recent years have yielded much research comparing
programming languages; this comparison has focused on
various aspects, ranging from the language features and
capabilities, the type of applications for which the language
is useful, to assessing the human factor criteria which is
what we would like to do [8], [9]. The latter aspect can
be addressed by posing the question of how usable and
learnable the language is.

In the proposed research, we would like to focus on the
scenario-based properties of the language that also allow
the use of a natural language interface, rather than only the
visual aspect. We cannot evaluate the ideas by comparing
to programming languages based on feature comparison, as
is done for Fortran or C [8]. Rather, we have to deal with
evaluating a language that is implemented in PlayGo [10],
an Eclipse-based tool still under development that is not
yet familiar to non-programmers. Also, we need to develop
a method to teach the language to non-programmers in an
intuitive way. It is therefore necessary to either design an
experiment that will include also a teaching phase but will
not be too long, or consider case studies on specific persons
and projects. We also describe an exploratory experiment
conducted on programmers familiar with the language that
compared between the interfaces and between the LSC
language and the procedural language of Java.

II. LSC INTERFACES

LSCs [1], [3] are based on sequence diagrams and include
a set of vertical lines, called lifelines, that represent the ob-
jects in the scenario, and horizontal arrows, called messages,
that represent the interactions between the objects in the
scenario; see Figure 1. Time flows from top to bottom, and
there is a partial order between the messages. Additional

USER 2012, Zurich, Switzerland

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on August 21,2022 at 13:19:06 UTC from IEEE Xplore. Restrictions apply.

elements, such as synchronization or alternative constructs
can be added too (For a more thorough description of the
language refer to [3]).

The fact that LSCs are both visual and scenario-based,
results in multiple ways of creating them, each with its own
advantages. We elaborate on the creation interfaces below.

Editing. Since LSCs are visual, they can be created,
like many other diagram tools, by adding elements from
a menu or dragging and dropping elements from a toolbar
as in UML2Tools [11]. LSCs are a lot richer than sequence
diagrams; e.g., they include modalities of whether a message
may happen or must occur (cold or hot, respectively). This
means the user creating the messages must also consider and
set the modalities. It also requires the user to tell the system
when the monitoring part ends and the execution starts for
each scenario (called prechart and main chart, respectively
[1], [3]). We call this first interface Editing.

Basic Play-In. A second way of creating LSCs is Basic
Play-In, first defined in [3], [5], and similar to programming
by example (PBE) approaches [12]. Basic Play-In permits
the user to play with the non-behaving system or a mock-up
thereof through a GUI to create the LSC. The demonstration
on the GUI is used to create parts of the formal rules in the
form of an LSC. It is not generalized as in PBE systems,
and it is domain-general relative to the GUI of the system,
but specific since it creates LSC constructs. For example,
to add a message of “click” from the user lifeline to the
button lifeline, the user can demonstrate the operation by
simply clicking the button. The Basic Play-In method is very
natural and is made possible due to the scenario-based nature
of the LSC language: “demonstrate the scenario to create
the requirements”. However, to demonstrate what is cold
or hot and to specify additional non-interactive constructs,
e.g., conditions, one has to use more standard ways of menu
selection.

Natural Language Play-In (NL-Play-In). Recently, we
suggested a natural language play-in interface for LSC (NL-
Play-In) [6]. This interface uses a context free grammar to
create a controlled natural language for LSC. NL-Play-In is
similar to using natural language to create code as is done in
spoken Java [13], which was developed to help programmers
with repetitive strain injuries create Java code by using a
speech interface and a grammar built for Java. However,
the language is more natural since it translates to scenarios
rather than code and does not require knowledge of Java.

Clearly, natural language may include multiple ways to
specify the same semantics. Therefore, the interface prompts
the user to resolve ambiguities when they exist. NL-Play-In,
combined with the scenario-based nature of LSC, creates the
possibility to “program” by writing requirement sentences in
(controlled) English. For example, to automatically create
the LSC in Figure 1, one can write “when the user clicks
the c-button, the light state changes to on and if the display
mode is not time, the display mode must change to time”.

18

The NL-Play-In parser helps the person writing the re-
quirements (who may not be a programmer) to connect
the different requirements by making sure she/he refers to
existing objects and methods or realizes she/he is adding
new ones.

The process includes a stage of grammatical parsing, with
the addition of asking the user to resolve any grammatical
ambiguities. This is followed by the analysis of the require-
ment, using the model, which serves as a knowledge base
and helps the user make the connection between the different
scenarios. The modalities (may/must), the prechart/main-
chart indication and the conditions, are added automatically
by NL-Play-In based on the sentence, thus avoiding the need
to handle them explicitly as in Editing or Basic Play-In.

Show&Tell (S&T). An additional method recently de-
veloped is Show&Tell (S&T) [7]. This method is a subtle
combination of Basic Play-In and NL-Play-In. The play-in
interaction is interpreted based on the textual context. The
user can enter her/his requirements textually, but can also
use the advantages of play-in to interact with the system in
the midst of the requirement specification process, creating
parts of the sentence (and later the corresponding diagram)
by interaction without explicitly writing object names or
actions. A similar combination of voice and gestures (rather
than text and play-in) has been used for managing graphical
spaces with “put-that-there” [14]. Voice pronouns such as
“that” and ‘“there” were used to allow the integration of
gesture information instead of the voice reference. For
example, saying “that” and pointing to an object would
integrate the object into the command. Show&Tell integrates
text and GUI manipulation to assist in the creation of system
requirements, rather than preform commands. However, it
may also benefit from voice integration.

The interaction is interpreted depending on the current
parse of the text, there is no need for textual placeholders,
although they could be integrated in a later version. For
example, if the text entered so far (prefix text) is when
and the interaction is <clicking the button>, the suggested
texts would include when <the user clicks the button>.
However when the prefix text is when the user, the
same interaction will add the suggestion of <clicks the
button> or <clicks>. Using the grammar parse state and the
interaction possibilities, the system will suggest to add only
reasonable additions that will make sense grammatically.

III. EMPIRICAL EVALUATION PROPOSAL

The experiment we want to perform will test which of
the LSC interfaces is preferable and hence more natural to
non-programmers, and try to prove that describing system
behavior in LSC is feasible, natural and intuitive, even for
the non-programmers. Our hypothesis is that NL-Play-In
would be preferable to Editing and Basic Play-In, and that
the process is indeed natural, since scenarios are close to
how humans describe and consider behavioral requirements.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on August 21,2022 at 13:19:06 UTC from IEEE Xplore. Restrictions apply.

c button

‘ light | ‘ display ‘

.i state(on) E
: displwodeotime b

@ madeftime)

Figure 1. A sample LSC. Time goes from top to bottom; each vertical
lifeline represents an object and the horizontal arrows are the messages
between the objects. The prechart (blue dashed hexagon) specifies that if
the messages in it occur in the correct order, the main chart (solid black
rectangle) must be executed.

IV. PAST EVALUATIONS

In an exploratory experiment with non-programmers, we
compared these interfaces for creating LSCs and also com-
pared programming simple behavioral requirements in LSC
to programming the same requirements in Java. The system
GUI and low level methods were provided in both cases in
advance, and the programmers had only to add the additional
behavioral requirements. These included some simple game
logic. Since the language of LSC and the scenario-based
approach to programming is relatively new, we compared
LSC to Java as a sample procedural language.

Participants. The experiment was performed on 10 pro-
grammers with experience of between 2-10 years with Java,
and understanding of LSC as taught in a course given on
visual languages, similar to the course described in [15]. Of
the interfaces, NL-Play-In was preferred by almost all the
participants. Those who did not prefer it mentioned technical
problems and personal preference of exact and completely
known syntax.

During the experiment, we encountered a necessity for
personal assistance to the participants, especially during the
learning phase of the NL-Play-In interface, and we believe
this is a point that must be addressed in any experiment
with non-programmers. All the programmers started out
with knowledge of LSC at a level taught in a course. This
prerequisite shortened the learning phase in the experiment.
The question of how much knowledge of LSC is required to
complete the task remains to be evaluated and pertains to the
learnability of the language. It will affect any experimental
protocol with non-programmers, since the preparation for
the experiment should reflect this lack of knowledge.

Tool and Tasks. This exploratory experiment was pre-
formed in PlayGo, an Eclipse-based product that implements

19

the LSC approach over Java classes using UML and AspectJ
[10]. Most of the programmers were familiar with the
Eclipse IDE and therefore with the conventional interface.
For non-programmers, this prior knowledge may not be
available and any such deficiency should be reflected in the
available tutorials and the learning phase in the experiment.
The task we created for the LSC and Java experiment was as
small as possible and included some tasks used for learning.

The complete experiment took over three hours, with at
least half of the time devoted to LSC. Not all the participants
were able to complete the LSC and the Java, and since we
believe non-programmers with no LSC understanding may
need more time, it is essential to plan an experiment with
reasonable tasks and length. Tasks should be as small as
possible to allow cleaner analysis, but complex enough to
allow testing the incremental, modular and effective nature
of the LSC language.

Evaluation. In our experiment we compared task times
and found that NL-Play-In and Play-In were quicker than
the Editing, and that S&T suffered from implementation
bugs and was considered inconvenient, since it required
dispersed use of both the keyboard and the mouse. This
may be different for programmers who type blindly and for
non-programmers who may type slower and prefer mouse
shortcuts. We also found that the Java task implementation
time was comparable to the implementation time in LSC. In
answers to questions during and at the end of the experiment,
most of the programmers preferred the NL-Play-In interface
over the other interfaces and also over Java and had a
subjective feeling that NL-Play-In was quicker.

Errors were hard to account for, mainly because we did
not ask the participants to execute their artifact due to
time constraints. In a full experiment with known tasks,
small enough, we can collect data on time, errors, and
the participants’ subjective feeling of intuitive and natural
programming. Moreover, we can use Green’s cognitive di-
mensions questionnaire [16], especially on viscosity, provi-
sionality, diffuseness, hard mental operations, and closeness
of mapping. Some issues of significance have to do with:
how to rate errors, success, and how to assess the intuitive
nature of the language and the interfaces.

V. FUTURE DIRECTIONS

We believe that questions regarding how intuitive and
natural a language is are tough [17], but understanding
them can help create a better programming language. This
seems to be definitely worthwhile, considering the dream of
liberating programming.

We would like to plan an experiment with quantitative
and convincing results that will support the learnability of
the language. We would also like to test the use of LSC in
tasks for non-programmers. Such experiments will require a
protocol that teaches the language and its interfaces and also
tests the usability in planned or in open-ended tasks chosen

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on August 21,2022 at 13:19:06 UTC from IEEE Xplore. Restrictions apply.

by the users. Valid methods for assessing the outputs of
such experiments need to be developed. We would like to
create tasks that will enable us to assess the success of the
users, as well as how *fun’ and usable programming with the
language felt to them. Also, any such experiment needs to
consider that programming in LSC should not be considered
only as a method for creating visual executable diagrams
but rather also as a way to test the ideas of behavioral
programming and the naturalness of thinking in separate but
incremental scenarios. We would like to be able to test and
assess the language in tasks that require incremental system
behavior and compare them to incremental development in
other programming environments.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their productive comments. This research was funded by
an Advanced Research Grant from the European Research
Council (ERC) under the European Community’s 7th Frame-
work Programme (FP7/2007-2013). In addition, part of this
research was supported by The John von Neumann Minerva
Center for the Development of Reactive Systems at the
Weizmann Institute of Science.

REFERENCES

[1] W. Damm and D. Harel, Formal Methods in System Design,
vol. 19, no. 1, pp. 45-80, 2001.

[2] D. Harel, “Can Programming Be Liberated, Period?” IEEE

Computer, vol. 41, no. 1, pp. 28-37, 2008.

[3] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based

Programming Using LSCs and the Play-Engine. Springer-

Verlag, 2003.

S. Maoz and D. Harel, “From Multi-Modal Scenarios to Code:
Compiling LSCs into Aspect],” in SIGSOFT FSE, 2006, pp.
219-230.

(4]

[5] D. Harel and R. Marelly, “Specifying and Executing Behav-
ioral Requirements: The Play-In/Play-Out Approach,” Soft-
ware and Systems Modeling, vol. 2, no. 2, pp. 82-107, 2003.
[6] M. Gordon and D. Harel, “Generating Executable Scenarios
from Natural Language,” vol. 5449, 2009, pp. 456—467.

20

(7]

(8]

(9]

(10]

(1]

(12]

[13]

(14]

[15]

[16]

(17]

——, “Show-&-Tell Play-In: Combining Natural Language
with User Interaction for Specifying Behavior,” in Proc.
IADIS Interfaces and Human Computer Interaction, 2011, pp.
360-364.

N. M. Holtz and W. J. Rasdorf, “An Evaluation of Pro-
gramming Languages and Language Features for Engineering
Software Development,” Engineering with Computers, vol. 3,
pp. 183-199, 1988.

J. Howatt, “A Project-Based Approach to Programming Lan-
guage Evaluation,” SIGPLAN Not., vol. 30, pp. 37-40, July
1995.

D. Harel, S. Maoz, S. Szekely, and D. Barkan, “PlayGo:
Towards a Comprehensive Tool for Scenario-Based Program-
ming,” in Proc. of the IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE), 2010, pp. 359-360.

“Eclipse UML2 tools,”
http://www.eclipse.org/modeling/mdt/?project=uml2tools.

A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,
D. Maulsby, B. A. Myers, and A. Turransky, Eds., Watch
What 1 Do: Programming by Demonstration. ~Cambridge,
MA, USA: MIT Press, 1993.

A. Begel and S. Graham, “Spoken programs,” in IEEE Symp.
on Visual Languages and Human-Centric Computing, 2005,
pp- 99 — 106.

R. A. Bolt, “‘put-that-there”: Voice and gesture at the graphics
interface,” SIGGRAPH Comput. Graph., vol. 14, no. 3, pp.
262-270, Jul. 1980.

D. Harel and M. Gordon-Kiwkowitz, “On Teaching Visual
Formalisms,” IEEE Software, vol. 26, pp. 87-95, 2009.

A. F. Blackwell and T. R. G. Green, “A Cognitive Dimensions
Questionnaire Optimised for Users,” in Proc. of the 12th
Annual Meeting of the Psychology of Programming Interest
Group (PPIG 2000), 2000, pp. 137-152.

S. Markstrum, “Staking claims: a history of programming
language design claims and evidence: a positional work
in progress,” in Evaluation and Usability of Programming
Languages and Tools, 2010.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on August 21,2022 at 13:19:06 UTC from IEEE Xplore. Restrictions apply.

